GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Applied Mechanics (Code: 3300008)

Diploma Programmes in which this course is offered	Semester in which offered		
Automobile Engineering, Metallurgy Engineering	First Semester		
Civil Engineering, Environment Engineering, Fabrication Technology, Mechanical Engineering, Mechatronics Engineering, Mining Engineering, Transportation Engineering	Second Semester		

1. RATIONALE

Applied mechanics, as its name suggests, bridges the gap between physical theory and its application to technology. As such, applied mechanics is used in many fields of engineering, especially mechanical and Metallurgy Engineering. In this context, it is commonly referred to as engineering mechanics. To impart basic knowledge of Engineering Mechanics where in Laws of Physics are applied to Solve Engineering problems, this programme / course will help the student to develop basic know how & awareness of the various laws of physics & it's real life applications in the various fields of engineering

2. LIST OF COMPETENCIES

The course content leading to the achievement of the following competencies;

i. Apply the concepts of force, work and energy to calculate work done, power required & efficiency for various simple machines

3. Teaching and Examination Scheme

Teaching Scheme (In Hours)		Total Credits	Examination Scheme						
(111 11001 5)	(L+T+P)	Theory Marks		(T , D)		ll Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА		
3	0	2	5	70	30	20	30	150	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1.1Define scope of Engineering Mechanics	Scalar & Vector Quantities – like force, pressure, velocity, acceleration
Introduction	1.2 Classify Scalar & Vector quantity1.3Diffrentiate the systems of	Static & Dynamic – Kinetics & Kinematics
	Units	MKS, CGS & SI units and its conversion along with FPI and Metric System
Unit– II	2.1Understand Co - planer Concurrent Force system	Force – units, elements, Laws/Principles of forces such as Principle of
Coplanar Concurrent Forces	2.2Compute resultant & Equilibrium forces for given coplanar concurrent force system	Superposition ,Principle of transmissibility Composition & Resolution of Forces Resultant & Equilbrium forces
Forces	copianal concurrent force system	conditions of equilibrium Analytical & graphical method for Law of Parallelogram, Law of Triangle, Lami's Theorems, Law of Polygon
Unit– III Coplanar	3.1Differentiate Co-planar , parallel and non - concurrent forces 3.2Compute resultant &	Principal of Moment Moment , Couple , , application , properties of couple , conditions of equilibrium types of supports , end conditions – Hinge , free end , roller ,fix ,
Non- Concurrent Forces	Equilibrium forces for given coplanar concurrent force system	types of loads like point load, U.D.L, U.V.L, Couple, Analytical method to Evaluate reactions in statically determinate beam subjected to point load and/ or U.D.L
	3.3 Calculate Support reactions of the given simply supported beam	by analytical method of solving Statically determinate beams to
Unit – IV Centroid & Centre of Gravity	4.1Distinguish between Centroid and Centre of Gravity4.2Compute Centroid & centre of gravity in different shape and lamina	First moment of area ; to find Centroid –standard shapes of I, L, Channel & T sections, axis of symmetry First moment of mass ; to find C.G of standard solids sections, Axis of symmetry
Unit – V Friction	Engineering applications	Friction , Laws of Friction, Angle of Friction, Angle of Repose, types of friction Application of Lami's theory and theory of resolution of forces, examples on friction for a block resting on horizontal plane & on inclined plane
Unit – VI Work, Power	6.1Establish relation betweenWork, Power Energy6.2Calculate IHP and BHP indifferent conditions	Work – work done, force displacement diagram, torque, work done by torque Power – I.H.P and B.H.P of engine, Equation of H.P in terms of Torque and R.P.M, Engineering Problems
& Energy		Energy – Kinetic & Potential energy and Engineering Problems
Unit – VII Simple Machines	7.1Apply the principle & application of Simple Machines 7.2 Compare reversible & irreversible Machines, evaluate the efficiencies of various simple machines	principles of machines to evaluate Mechanical Advantage, Velocity Ratio of simple machine pulley blocks , Draw Line sketch of different systems of Simple and compound levers , Problems, Laws of Machines, reversible & non reversible machines

			Distribution of Theory Marks				
Unit	Unit Title	Teaching					
No.		Hours	R	U	Α	Total Marks	
			Level	Level	Level		
1.	Introduction	02	04	00	00	04	
2.	Coplanar Concurrent Forces	10	02	02	06	12	
3.	Coplanar Non-Concurrent Forces	10	02	02	08	12	
4.	Centroid and Centre of Gravity	04	02	02	06	10	
5.	Friction	06	02	04	06	12	
6.	Work, Power & Energy	04	02	02	06	10	
7.	Simple Machines	06	02	02	08	12	
	Total	42	16	14	40	70	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxomonoy

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

S. No.	Unit No.	Practical Exercise/Experiment		
1	01			
2	02	Verify and calculate resultant force through Law of Parallelogram, Polygon Law of Forces, Lami's Theorem		
3	03	Verify reactions in beam through Graphical & analytical method		
4	04	Calculate Centroid of lamina and Centroid of different sections		
5	05	Calculate Co efficient of Sliding Friction for different surfaces - Wood, Glass		
6	06			
7	07	Work-out M.A & Efficiency of Simple purchase crab, simple wheel and axle, simple screw jack		

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- 7.1 Students will prepare File/journal for the above mentioned Experiments.
- 7.2Students may be given few exercises to calculate resultant/equilibrium force of the force system graphically & analytically verify the results. -unit 2
- 7.3 Student may be asked to collect photographs from internet which is related to field application of various topics.

8. SUGGESTED LEARNING ACTIVITIES

A. List of Books

Sr. No.	Title of Book	Author	Publication
1.	Engineering Mechanics	R S Khurmi	S. Chand , New Delhi
2.	Engineering Mechanics	D S Kumar	S. K. Kataria & Sons,
3.	Engineering Mechanics 7 th edition	Bear & Jonstan	New media
4.	Applied Mechanics	H J Shah & Junarkar	CHAROTAR Publication

B. List of Major Equipment/ Instrument

- 7.4 Apparatus for Law of Parallelogram, Lami's theorem & law of Polygon
- 7.5 Apparatus for determination of coefficient of friction
- 7.6 Apparatus to determine CG of Lamina
- 7.7 Beam apparatus to find reactions
- 7.8 Simple purchase crab , simple wheel and axle , simple screw jack

C. List of Software/Learning Websites

Video Lectures on Applied Mechanics By Prof.SK. Gupta, Department of Applied Mechanics, IIT Delhi

www.tut.fi/.../InstituteofAppliedMechanicsandOptimization/TME-51

ocw.mit.edu > ... > Mechanics of Materials

www.me.ust.hk/.../ME106-applied%20mechanics-lecture%201.pdf

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B G RAJGOR , HOD , Dept of Applied Mechanics, B & B Institute of Technology
- Prof. J H GABRA , I/C HOD , Dept of Applied Mechanics, G.P , Godhara

Co-ordinator and Faculty Members from NITTTR Bhopal

• Dr. J.P.Tegar, Professor Dept. of Civil and Environmental Engg, NITTTR, Bhopal.